Prof Henry McSorley

Prof Henry McSorley
Prof Henry McSorley
University of Edinburgh
Speaker

Presentations at BSP Spring Meeting 2019

Wed17  Apr09:00am(30 mins)
Keynote: Heligmosomoides polygyrus secretes multiple immunomodulators of early innate immune responses

Session: Host-Pathogen interactions - IV
Room: Renold C16

Profile of Prof Henry McSorley

Background
Infection with helminth parasites is associated with reduced prevalence of allergic and inflammatory disease, an observation which led to the "Hygiene Hypothesis": the idea that early life infections (especially parasitic infections) are required for healthy development of the immune system, and without these infections the immune system is prone to hyperactivity. In recent years, this theory has been tested with the development of "Helminth Therapy": using live parasitic infection to attempt to control pathology in immune-mediated diseases. This approach has shown some efficacy in Crohn's disease, ulcerative colitis and multiple sclerosis, however logistical and safety issues may prevent the widespread use of infective parasites as therapeutic agents. A far more attractive approach is to identify immunomodulatory parasite products, and use synthesised forms of these to treat disease.

The epithelium is central to the development of allergic disease, and serves not only as a barrier but also as an immune organ: damage due to inhaled allergens or respiratory viral infection can lead to the release of proallergic mediators and the development of allergic responses such as those seen in asthma. A critical pro-inflammatory mediator appears to be IL-33, an "alarmin" cytokine which is stored in epithelial cells of the lung and released under conditions of damage, stress and necrosis. In genome-wide association studies, clinical observations and animal models, IL-33 has been strongly associated with the development of allergy and asthma. It is released upon allergen inhalation and respiratory viral infection, two stimuli which can lead to the development of allergic responses in the lung. IL-33 acts on a range of immune cells including group 2 innate lymhpoid cells (ILC2) which in turn produce IL-5 and IL-13, initiating and amplifying allergic responses.

Research Overview
The chronic intestinal helminth parasite of mice, Heligmosomoides polygyrus, has many immunomodulatory effects, including the ability to suppress pathology in mouse models of asthma, colitis and autoimmune disease. The collected excretory/secretory products of H. polygyrus (HES) can replicate many of the immunomodulatory effects of infection, including suppression of pathology in models of immune-mediated diseases. In mouse models of asthma, we have shown that HES can suppress immune responses initiated using an alum adjuvant or extracts of the fungal allergen, Alternaria alternata. In both models, suppression is dependent on HES acting on the very earliest events in allergic response initiation. In the Alternaria model in particular, HES suppressed IL-33 release within the first hour after allergen administration, resulting in reduced ILC2 activation and ultimately a smaller type 2 response and reduced pathology in the lungs (McSorley, 2014, Mucosal Immunology).

We aim to identify the individual molecules in HES responsible for its immunomodulatory effects, with a view to producing these (or derivatives of these) as potential therapeutic agents for human disease. In conjunction with this work, we aim to dissect the mechanisms by which HES suppresses the release of IL-33, as this may give us new insights into the biology of IL-33, ILC2 responses and asthma in general.

Colleagues

Dr Musa Hassan
Chancellor's Fellow
University of Edinburgh
Prof Keith Matthews
Professor
University Of Edinburgh
Prof Alex Rowe
Professor of Molecular Medicine
University of Edinburgh
Prof Alex Rowe
Professor of Molecular Medicine
University of Edinburgh
Dr Petra Schneider
researcher
University of Edinburgh
Dr Joanne Thompson
Senior Lecturer
University of Edinburgh
Mr Joanne Thompson
senior lecturer
University of Edinburgh

Email

Please login to send a Private Message

Hosted By

British Society for Parasitology (BSP)
We are science based charitable society.
Event Logo Find us on Facebook Follow us on Twitter

Get the App

Get this event information on your mobile by
going to the appstore or google play and search for 'eventflo'
Eventflo Home
copyright British Society for Parasitology (BSP), eventflo.co.uk, Labhoo Ltd 2003-2021