Poster
39

NOVEL GPR39 AGONISTS: CORRELATION OF BINDING AFFINITY USING LABEL-FREE BACK-SCATTERING INTERFEROMETRY WITH POTENCY IN FUNCTIONAL ASSAYS

Discussion

Back-scattering interferometry (BSI) is an emerging label-free, conformation-sensitive detection technology for quantitative mass- and matrix-independent biophysical characterization of small molecule interaction with complex drug target proteins under native-like conditions (1). Integral membrane proteins such as GPCRs are critical targets for drug discovery but present a host of challenges to the investigation of their biophysical properties. Of paramount interest to drug discovery efforts is the characterization of the interaction of GPCRs with small molecule compounds as a component of library screening, mechanism of action (MOA) determination, drug candidate profiling, and other aspects of intermolecular binding that inform pharmacology and medicinal chemistry. The difficulty associated with obtaining small molecule affinity data for functionally intact GPCRs effectively restricts the range of assay techniques suited to quantifying these interactions in vitro.

Herein, we describe the application of BSI to the characterization of small molecule ligand binding to human GPR39 overexpressed in crude membrane fractions in free solution. GPR39 is a Zn2+-responsive GPCR under investigation as a therapeutic target for type-2 diabetes (2). The ability to measure the affinity of small molecule agonists such as Zn2+ is especially novel, given the unfavorable mass ratio and fast off rate that complicates the use of more established binding assays. Results from screening representatives from multiple novel GPR39 agonist series is presented, including how BSI-derived affinity and functional assay-derived potency correlate for compounds of varying scaffolds.

References

(1) Bornhop DJ, Latham JC, Kussrow A, Markov DA, Jones RD, Sorensen HS. Free-solution, label-free molecular interactions studied by back-scattering interferometry. Science. 2007 Sep 21;317(5845):1732-6.

(2) Popovics P, Stewart AJ. GPR39: A Zn(2+)-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell Mol Life Sci. 2011 Jan;68(1):85-95.

Hosted By

ELRIG
The European Laboratory Research & Innovation Group Our Vision : To provide outstanding, leading edge knowledge to the life sciences community on an open access basis
Event Logo Follow us on Twitter

Get the App

Get this event information on your mobile by
going to the appstore or google play and search for 'elrig'
Login
Eventflo Home
copyright ELRIG, eventflo.co.uk, Labhoo Ltd 2003-2021