High levels of genomic differentiation between Nigerian Schistosoma TEXAS BIOMEDICAL RESEARCH INSTITUTE haematobium and S. bovis indicates strong barriers to gene flow

Enabulele EE^{1,2}, RN Platt II¹, Arya GA¹, Reyes AN¹; Adeyemi E³, Agbosua E², Aisien MSO², Ajakaye OG⁴, Ali MU⁵, Amaechi EC⁶, Atalabi TE⁷, Auta T⁷, Awosolu OB⁸, Dagona AG⁹, Edo-Taiwo O², Ejikeugwu EPC¹⁰, Igbeneghu C¹¹, Njom VS¹², Orji NM¹³, Onwude-Agbugui M¹⁴, Oyinloye FOP¹⁵, Ozemoka HJ¹⁴, Pam CR¹⁶, Ugah UI¹⁷, Anderson TJC¹

¹Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, USA; ²Dept. of Animal & Environmental Biology, University of Benin, Edo State; ³Dept. of Pathology, University of Benin Teaching Hospital, Edo State; ⁴Dept. of Animal & Environmental Biology, Adekunle Ajasin University, Ondo State; ⁵Dept. of Biology, Kano University of Science and Technology; ⁶Dept. of Zoology, University of Ilorin, Kwara State; ⁷Dept. of Biological Sciences, Federal University Dutsin-Ma, Katsina State; ⁸Department of Biology, Federal University of Technology, Akure, Ondo State; ⁹Dept. of Biological Sciences, Federal University, Gashua, Yobe State; ¹⁰Dept. of Applied Microbiology, Ebonyi State University, Abakaliki; ¹¹Dept. of Medical Laboratory Science, Ladoke Akintola University of Technology, Osogbo Osun State; ¹²Dept. of Applied Biology and Biotechnology, Enugu State University of Science and Technology; ¹³Dept. of Biological Sciences, Chukwuemeka Odumegwu Ojukwu University, Anambra State; ¹⁴Dept. of Biological Science, Edo University, Uzairue, Edo State; ¹⁵NTDs Division, Kwara State Ministry of Health; ¹⁶Science Laboratory Technology, Federal Polytechnic, Kaura Namoda, Zamfara State; ¹⁷Dept. of Microbiology, Alex Ekwueme Federal University, Ebonyi State.

Email for correspondence: eenabulele@txbiomed.org

Background

Schistosoma species are parasitic blood flukes responsible for schistosomiasis disease in humans and animals. Schistosoma haematobium and S. bovis are sympatric species which cause human urogenital and livestock schistosomiasis respectively. Earlier molecular investigation on Schistosoma species based on few gene markers provided evidence for mitonuclear discordance suggesting hybridization between S. haematobium and S. bovis. However, recent studies based on exome and genomic data have presented evidences for past hybridization events with subsequent introgression of *S. bovis* alleles into *S. haematobium*. To understand the evolutionary relationship between S. haematobium and S. bovis, we for the first time generated population genomics data for both species which were collected from humans and cattle in several states in Nigeria.

Methods

Whole genome amplification and sequencing of *S. haematobium* miracidia hatched from eggs collected from human urine and adult S. bovis from cattle were used to generated the genomic data for bioinformatics analysis.

Figures 1 (A) Sampling locations for S. haematobium and S. bovis in Nigeria. (B) PCA of unlinked, common SNVs (MAF>0.05) identified three groups corresponding to two population os S. haematobium and S. bovis. (C) Supervised and unsupervised admixture analyses show only a small S. bovis component associated with S. haematobium from Nigeria.

> **Acknowledgments:** We thank all the participants and the Cowles Postdoctoral funding at Texas Biomedical Research Institute.

- -> *S. haematobium*).
- We conclude that the chimeric *S. haematobium* genomes found in the samples 4. from Nigeria resulted from rare hybridization, followed by adaptive introgression of S. bovis genes, and that gene exchange between these species occurs on an evolutionary rather than an epidemiological timescale.