Diagnosis of sheep fasciolosis caused by Fasciola hepatica using

Cathepsin L ELISA and lateral flow technologies

Amber Dorey¹, Jesús López Corrales¹, Krystyna Cwiklinski¹, Carolina De Marco Verissimo¹, Richard Lalor¹, Heather Jewhurst¹, Amanda McEvoy², Michael Diskin², Catherine Duffy³, S Louise Cosby³, Orla M. Keane⁴, Sean Doyle⁵, John Pius Dalton¹

¹ Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland.

² Animal & Bioscience Department, Teagasc Mellows Campus, Athenry, Co. Galway Ireland.
³ Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK.

⁴Animal & Bioscience Department, Teagasc Grange, Dunsany, Co. Meath Ireland.

⁵ Molecular Biotechnology, Biology Department, National University of Ireland Maynooth, Maynooth, Ireland

Fasciolosis, a global parasitic disease of agricultural livestock, is caused by the liver fluke Fasciola hepatica. Management and strategic control of fasciolosis depends on early assessment of the extent of disease on farms to allow control measures to be rapidly implemented. Traditionally, this has relied on the detection of eggs in the faeces of animals, a laborious method that lacks sensitivity (especially for sub-clinical infections) and identifies chronic infections only. Molecular tools such as enzyme linked immunosorbent assays (ELISA) offer a faster and more sensitive serological means of diagnosis, with the potential to detect early acute infection before significant liver damage occurs. We evaluated the performance of three functionally-active recombinant forms of F. hepatica secreted cathepsin L's as antigens in an indirect ELISA to serologically diagnose liver fluke infection in experimentally infected sheep. We found that these enabled detection of fasciolosis in sheep as early as three weeks after experimental infection, at least five weeks earlier than both coproantigen and faecal egg tests. Furthermore, we developed a lateral flow assay capable of detecting infection as soon as 7 weeks post-infection. The lateral flow assay provides significant time and cost-saving advantages compared to the ELISA, while still demonstrating high levels of sensitivity. With the potential to be used at point-of-care and provide results within 30 mins, lateral flow technology represents a significant advancement over both the coproantigen ELISA and faecal egg count in the diagnosis of F. hepatica infection.