Risk factors of porcine cysticercosis, suitable management practice, and epilepsy survey in human at Ibadan, Oyo state

Ololade, A. D1*, Olanrewaju, C. A2, and Malann, Y. D
Biological Science Department, University of Abuja, Nigeria

Aim
This work aimed to study the prevalence and management of porcine cysticercosis in Pigs in Ibadan, Oyo.

Introduction
- Taenia solium is a pig-borne parasitic zoonotic disease and a significant public health concern in Africa (Sub-Saharan Africa) and is caused by the larval stage form distinctive pearly-white cysts (cysticerci).
- It could be embedded in the tissues of pigs and transmitted through the ingestion of undercooked or raw pork and through the fecal-oral route or contaminated hands through the surface of vegetables and by eating undercooked dog meat.
- Humans can act as both intermediate and definitive hosts, and cysts can develop subcutaneously, intramuscularly, and occasionally in the central nervous system, causing neurocysticercosis leading to epilepsy.
- The global burden of epilepsy was estimated at 7.8 million, with 6.5 million of these occurring in T. solium endemic regions of the world like Africa, India, and Latin America and at least 2.5 million carriers of taeniosis in the world.
- Porcine cysticercosis is a neglected tropical disease (NTDs) and is not part of the 2030 road map to eliminate NTDs. Also, there are insufficient data on the prevalence of Porcine cysticercosis in Nigeria.
- Cysts in the tissue (Taeniasis) could be diagnosed using lingual palpation, screening fresh fecal sample and Immunological assays, while cysticercosis (Cyst located at the CNS) could be diagnosed with Computed tomography (CT) and magnetic resonance imaging (MRI) scan in Human.

Methodology
- Four Local government areas were visited: Local farms and a slaughterhouse.
- Pigs’ species were grouped: exotic and Local species.
- A control site was chosen based on the description of good management practice in the literature.
- 5g of fresh fecal samples were collected with a sample size of 240. Only pigs above the age of three months were considered in the study.
- Samples collected were preserved in ethanol and analyzed in the laboratory within 72 hours.
- Ethyl-acetate sedimentation techniques and wet preparation was used to screen cyst in the laboratory.
- Indine stain was used to enhance cyst/ova/eggs features.
- Identification of cysticercus/cysticerci was made by taking photos directly from the microscope.
- Farmers and community members were given questionnaires.
- Qualitative data was collected from interviews and testimony of community members who are shy to admit the occurrence of epilepsy.

Results
- 240 overall samples collected and analyzed for the Cyst of T. solium (figure 3) in the laboratory with a prevalence of 3.3% was recorded.
- Several parasites were found in the study: The prevalence of Ascaris suum is higher from the study (7.8 %), while the prevalence status of Rhabdias cyst and Trichuris spp are the lowest in the survey (0.2 %), and the total parasite prevalence in the study is 33%.

Discussion
- Risk factors include: poor management practices (free range of pig), inaccessible to quality water, open defecation, and improper management of farm faecal matter.
- Vegetables claimed by local farmers to treat pig against parasites include Curcica papyra, Corchorus olitorius, Musa spp, Jatropha tajroensis, Moringa oleifera, Talinum triangulare, Thamnocalculous danielli, Morinda lucida, Azadirachta indica, Chromolaena odorata and Neuboldtia laevi.
- Areas of epilepsy occurrence coincide with the LGA with a higher prevalence of T. solium.
- Exotic species are more susceptible to T. solium.

Conclusion
- It was found that the prevalence of T. solium in the study is 3.3%, management practice, Source of water, and types of toilet facilities are the risk factors that aid transmission of porcine cysticercosis.

Recommendation
- Pig farmers should be discouraged from citing a piggery farm within a human settlement. The activities of farmers should be closely monitored for proper management and administration of a vaccine to the Pigs.

Reference
- Weka et al., 2002. (Journal of Infectious Disease of Developing Countries. 7(2), 87-92)
- Emilou et al., 2017. (Pig Veterinary. 75(9):905-910)
- Ulf et al. 2015. Parasites and Vector. 8:323. doi.org/10.1186/s13071-015-0938-7

Contact details
Department of Biology, Faculty of Science, University of Abuja
Email: olalolademi@yahoo.com
Twitter: @ololademi
LinkedIn: hwww.linkedin.com/in/skintayo-david-ololade